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Efficient Brownian dynamics simulation of particles near walls. II. Sticky walls
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In this paper we treat a boundary condition, the ‘‘sticky boundary,’’ which appears to be quite useful in
mesoscopic models. The sticky boundary is modeled as an infinitely deep, infinitely narrow, potential well
adjacent to a reflecting boundary. The free energy corresponding to this boundary is finite. The boundary
condition, which can be viewed as an intermediate between the absorbing and reflecting boundary condition,
may have many applications, e.g., for the simulation of the partial adsorption of polymer molecules to walls
and for the modeling of solvent quality. We will derive an efficient Brownian dynamics algorithm, capable of
handling interactions of a diffusing particle with a sticky wall. Our approach avoids the large discretization
errors that occur in the simulation of boundary interactions within the ‘‘standard’’ Brownian dynamics ap-
proach. The essence of our method was presented before@E. Peters and T. Barenbrug, Phys. Rev. E~to be
published!#. The treatment of the wall as proposed here is quite general, and therefore not limited to the use
within Brownian dynamics. In other simulation techniques which aim at treating the dynamics of mesoscopic
particles near walls, we expect it to be of use as well.
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I. INTRODUCTION

In this paper we discuss the ‘‘sticky’’ boundary conditio
We assume that the ‘‘stickiness’’ of the wall can be describ
by a narrow but deep potential well, adjacent to a reflect
wall. If a particle resides in this well, we say it ‘‘sticks to th
wall.’’ Otherwise the particle is called ‘‘free.’’ The wall itsel
obeys reflecting boundary conditions. The width of the w
is assumed to be much less than the typical displaceme
the Brownian particle during the chosen time step. Howe
the width of the well must be sufficiently large and spat
variations in the potential must be slow enough, compare
the particle’s free path, so that the Brownian description
valid everywhere. Furthermore, the potential is assume
have no long-range contributions.

For any potential fieldU(x), the equilibrium probability
density distribution of a particle in this field is given by th
well-known Boltzmann distribution

pEQ~x!5
1

Z
expF2

U~x!

kT G , ~1!

whereZ, the total sum of states, is a normalization fact
Since we assume that the potential well is narrow compa
to the length scales resolved by the description, this
probability distribution is not a very useful quantity. Muc
more interesting is the total probability that a particle stic
to the wall, i.e., resides somewhere in the potential well. T
probability can be found by integrating over the width of t
well, denoted byb,
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Pwall
EQ 5

1

ZE0

b

expF2
U~x!

kT Gdx. ~2!

Note that throughout this paper we denote a probability
‘‘ P,’’ and a probability distribution by ‘‘p. ’’ If we define the
‘‘wall free energy’’ by

Fwall52kTlnH E
0

b

expF2
U~x!

kT GdxJ , ~3!

the above probability can be expressed as

Pwall
EQ 5

1

Z
expF2

Fwall

kT G5pfree
EQexpF2

Fwall

kT G , ~4!

where the last equality is a simple result of Eq.~1! with U
50. We will discuss some implications of Eq.~3! later.

We are interested in phenomena on length scales m
larger thanb. We postulate that in this regime the wall fre
energyFwall is sufficient to describe the wall interaction. Fo
equilibrium properties this is obviously true, whereas for t
dynamical ones it is less obvious. On the one hand,
could argue that by changing bothE and b, while leaving
Fwall unchanged, quantities such as escape rate m
change. On the other hand, it is unlikely that such a cha
of the internal variables of the well would influence the e
trapment rate, under the assumption that the Brown
moves of the particle are much larger thanb. If only the
escape rate is influenced while the entrapment rate rem
the same, the equilibrium statistics would change by t
operation. Since the equilibrium state does not change w
Fwall is kept constant, the dynamics of the system can
change either. We therefore draw the conclusion that in
regime of relatively large~time! steps the dynamics of th
©2002 The American Physical Society02-1
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system are governed byFwall only. Note that this argument i
a purely qualitative one. In fact, in the pure diffusion regim
considered here one cannot even unambiguously define
cape and entrapment rates. We will return to this point f
ther on.

II. WALL INTERACTION DYNAMICS

Building on the above arguments we postulate that o
Fwall is important for the description of the dynamics o
length scales much larger than the width,b, of the potential
well. Therefore one has some freedom in choosing the fu
tion U(x). We make the convenient choice of a square w
potential,

U~x!5H 2E for x,b,

0 for x.b.
~5!

In the preceding section we already stressed the fact tha
wall potential should be sufficiently smooth for the Brow
ian description to be valid everywhere. Therefore, this pot
tial should be understood as a mathematically conven
approximation of such a smooth potential. Then the wall f
energy is given@see Eq.~3!# by

Fwall52E2kT ln b. ~6!

In our previous paper@1#, we pointed out the reason fo
the large discretization error of naive algorithms used for
simulation of Brownian particles in the vicinity of walls: th
systematic and substantial underestimation of diffusive in
actions with the wall within every time step of the Brownia
dynamics algorithm. The solution of this problem is straig
forward. A correct discretization of the stochastic different
equation~SDE! consists of the generation of displaceme
according to a conditional probability distribution that a
proximates the true distribution up to sufficient order in t
time step. For the particle near a flat absorbing or reflec
wall, it was shown that any distribution with the correct z
roth, first, and second moments~which does not cross th
boundary! gives a correct discretization with a global acc
racy of O(Dt).

In this paper essentially the same is done, although
situation has become more complicated. Again the numer
approximation to the SDE for the particle must quantitativ
contain all relevant aspects of its motion, but now with
spect to the sticky wall. Due to the presence of the poten
well, these aspects now must include not only displaceme
but also the possible transitions, depending on its star
position, e.g., remaining stuck to the wall, being attach
during the time step, being detached, and remaining free

The central quantity needed for the calculation of the
probabilities and probability densities for the motion a
transitions of the Brownian particle with respect to the stic
wall, is the Green function,G(Dt,x,x0), associated with the
chosen system. In Appendix A an expression for this Gr
function is derived. By means of this expression, the diff
ent transition probabilities and probability densities are
rived in the following two sections. As the last step in the
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derivations, we take the limitsb→0 andE→`, while keep-
ing Fwall constant, to arrive at expressions that are appro
ate for our model of a ‘‘sticky wall.’’ For all computations
we usekT51 andD51. This does not make the equation
fully dimensionless. Later we will also introduce a charact
istic time tchar, which will be related to a characteristi
length scalexchar by means of the diffusion constant.

Additionally, in Appendix B we have considered th
same limiting case, to construct the appropriate stic
boundary condition for the diffusion equation. The soluti
of the Fokker-Planck equation with this boundary conditi
could be used for an alternative approach to the Brown
dynamics algorithm as presented here.

A. Sticking probabilities

First we consider the probability that a particle th
sticked to the wall at timet50 also sticks to the wall at time
t5Dt. The resulting probability includes possible intermed
ate states in which the diffusing particle is free and/or sti
ing within the chosen time step. The calculated probabilit
solely refer to the situations at the start and at the end of
time step.

Before the limitb→0 is taken, a sticking particle is cha
acterized by the fact that it resides in the well:x0,b. The
chance that a particle also sticks at timet5Dt is equivalent
to the probability that it resides at any positionx,b at that
time. Using the Green function, Eq.~A25!, we therefore find

Pstick→stick~Dt !5 lim
b→0

E
0

b

G~Dt,x,x0!dx with x0,b

5
2

p
lim
b→0

E
0

` exp@2E#sinlb coslx0

l~sin2lb1exp@22E#cos2lb!

3exp@2l2Dt#dl

5
2

pE0

` exp@Fwall#

l21exp@2Fwall#
exp@2l2Dt#dl

5
2

pE0

` 1

l̃211
exp@2l̃2Dt exp~2Fwall!#dl̃

5exp@Dt exp~2Fwall!#erfc@ADt exp~2Fwall!#

5exp@D t̃ #erfc @AD t̃ #, ~7!

where we first performed the integral overx, then substituted
Eq. ~3! for the wall free energy and then took the limitb
→0. Note that thex0 dependence drops out when taking t
limit b→0, which means that the statement: ‘‘at the wall’’
unambiguous in this limit. The function erfc@# is the comple-
mentary error function, i.e., erfc@ #512erf@ #.

The symbols indicated by the tilde are made dimensi
less by means of the characteristic time and the character
length scale, by means of
2-2
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EFFICIENT BROWNIAN DYNAMICS . . . . II. . . . PHYSICAL REVIEW E 66, 056702 ~2002!
l̃5lxchar, t̃ 5t/tchar, x̃5x/xchar. ~8!

The characteristic length scale is given by

xchar5exp@2Fwall /kT#. ~9!

At first sight one might think there is something wrong co
cerning the dimensions in this equation. This is not the ca
A careful look at exp@2Fwall /kT#, using Eq.~6!, reveals that
this quantity has the dimension of length. The cause for
is the definition ofFwall in Eq. ~3!. Here we take a logarithm
of a dimensional quantity~with dimension length!. This
could have been prevented by computing a full partit
function of the wall region and not only the configuration
part. In this way one should integrate the full Boltzma
factor also over momentum space and divide by the elem
tary volume of phase space, which is given by quantum m
chanics to be the Planck constanth. This procedure would
give rise to the normalization of the integral within the log
rithm by a thermal de Broglie wavelengthl. This wave-
length has no physical significance in our problem. The
free energy is only changed by a constant offset compare
the expression we use here. Using the full expression of
free energy andl one can construct a characteristic leng
scale for the problem~which is of course independent ofl).
This length scale is exactly the same characteristic len
scale as the one given by Eq.~9!. Note that the free energ
defined by Eq. 3 is not ill defined in a mathematical sen
The reason is that the multiplication of units and numbers~or
other units! is communicative. Therefore, the ordinary rul
for mathematical functions such as the logarithm are obe
for these quantities.

The characteristic timetchar is defined as the mean tim
needed to diffuse a distancexchar, i.e.,

tchar5
xchar

2

D
5

exp@22Fwall /kT#

D
. ~10!
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Note that tchar does not have the well-known Arrheniu
shape. In the case of the Arrhenius scaling the time sca
the Boltzmann factor divided by a collision frequency. Th
scaling is only valid if the width of the potential barrier
smaller than the mean free path. If a particle approaches
barrier and has a sufficiently large kinetic energy it will e
cape. In our case, however, we are in the diffusion regim
The width of the real physical barrier~i.e., as opposed to ou
square potential approximation! is much wider than the par
ticle’s free path. Therefore the momentum of the parti
reequilibrates before the barrier is fully crossed. It will not
crossed in a ballistic manner. This kind of wall interaction
probably a good approximation for many surface phenom
in liquid or soft-condensed systems.

In the Brownian regime the particle trajectory remains
fractal object. Looking at the sticky wall, the smaller th
time step one chooses, the more escapes and entrapm
one will find in a certain fixed period of time. However, i
most cases the escaped particle will stick to the wall ag
after the next time step. Therefore, these escapes remain
noticed if one uses a larger time step. Counting escapes
entrapments as such is therefore not very useful.

For the limiting cases of very small and very large tim
steps, one can find simple approximations,

Pstick→stick~Dt !'5 122AD t̃

p
for Dt!tchar,

A tchar

pD t̃
for Dt@tchar.

~11!

For Dt50 the time derivative does not exist, which illus
trates that no~initial! escape rate can be defined.

The second case we consider is the probability that a
ticle in free space at time 0 will be entrapped by the wall
time Dt. This probability is given by
Pfree→stick~Dt,x0!5 lim
b→0

E
0

b

G~Dt,x,x0!dx, with x,b

5
2

p
lim
b→0

E
0

`sinlb

l

~sin2lb1exp@22E#cos2lb!coslx02$sinlb coslb~12exp@2E# !%l sinlx0

sin2lb1exp@22E#cos2lb

3exp~2l2Dt !dl

5
2

p
E

0

` cos~ l̃exp@Fwall#x0!2l̃sin~ l̃exp@Fwall#x0!

l̃211
exp@2l̃2exp~2Fwall!Dt#dl̃

5exp@ x̃01D t̃ #erfcF x̃012D t̃

2AD t̃
G , ~12!
2-3
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where we first performed the integral overx, then substituted
Eq. ~3! for the wall free energy and then took the limitb
→0. In Fig. 1,Pfree→stick(Dt,x0) is plotted as a function o
dimensionless timeDt/tchar, for several values ofx0.

In the limit x0→0 one finds thatPfree→stick(Dt,x0) ap-
proachesPstick→stick(Dt). This should be the case, since ve
close to the wall the probability of entrapment approache
Once entrapped, a particle behaves like a sticking particle
that the limitx0→0 behaves in a continuous way.

In Fig. 2 the spatial dependence ofPfree→stick(Dt,x0) is
plotted, where the position is made dimensionless by me
of division by ADDt, which is a measure for average di
placement due to diffusive motion in a timeDt. From this
graph it becomes clear that, in order to describe the w
interaction in a time step correctly, one only needs to c
sider the region within a few distancesADDt from the wall.
In the left graphPfree→stick(Dt,x0) is shown. In the right
graph a multiplication factor ofApDt/tchar is used, corre-
sponding to the limiting short and long time behavior. T
short time behavior corresponds to the situation of a fu
e

l

er

he
a
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absorbing wallPfree→absorb(Dt,x0)5erfc@x/(2ADDt)#. For
long times the fully reflecting case is approached. In
perfectly reflecting case, of course, no particle will stick
the wall. Below we discuss the close relationship that ex
between the results for a sticky and a fully reflecting wal

B. Probability distributions in free space

In this section we study the cases opposite to those
cussed in the preceding section: particles of which the fi
position is not at the wall, but in free space. The state at
wall is macroscopically occupied and can therefore be
scribed in terms of probabilities. The state in free space m
be described in terms of probability densities. Again the
are two cases to be considered. The first is the situa
where the particle starts at the wall and ends up in free sp

For the particle that starts at the wall, the initial conditio
are x.b and x0,b. In this situation the Green’s function
Eq. ~A25!, in the limit of b→0 and a fixed value ofFwall
reduces to
pstick→free~Dt,x!5 lim
b→0

G~Dt,x,x0!

5
2

p
exp@Fwall#E

0

`exp@Fwall#coslx2l sinlx

l21exp@2Fwall#
exp@2l2Dt#dl

5
2

p
exp@Fwall#E

0

`cos~ l̃exp@Fwall#x!2l̃sin~ l̃exp@Fwall#x!

l̃211
exp@2l̃2exp~2Fwall!Dt#dl̃

5
1

xchar

exp@ x̃1D t̃ #erfc F x̃12D t̃

2AD t̃
G . ~13!
tic
od
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free
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One can check~by partial integration! that the total probabil-
ity is correctly normalized, e.g.,

E
0

`

pstick→free~Dt,x!dx512Pstick→stick~Dt !. ~14!

When inspecting Eq.~6! once more, one can conclud
that a sticky wall with characteristic lengthxchar is equivalent
~in its long time behavior! to a ‘‘degenerate’’ potential wel
of width xchar and no energy difference, i.e.,E50 and b
5xchar in Eq. ~6!. The latter system can be understood as
behind the original well, at a distancexchar, a virtual wall is
placed, with fully reflecting properties. This wall, togeth
with this extra distance, appears to~almost! replace the effect
of the potential well, at least for larger diffusion times. T
probability distribution for a particle released near the virtu
reflecting wall, would be
if

l

papprox~Dt,x!5
1

ApDDt
expFx1xchar

4DDt G . ~15!

In Fig. 3 we compare this approximation with the analy
solution Eq.~13! and see that the comparison is very go
for longer times. This shows thattchar, i.e., the time the
particle needs to travel the virtual distance behind the w
can be considered a kind of retardation time, i.e., the aver
time the sticky wall succeeds in capturing a particle, af
which it is able to escape and continue its journey as a
particle. For really long times, whenxchar!ADDt, the lim-
iting curve is also approximated well by a Gaussian cu
with the center atx50 ~instead ofx5xchar).

Expression Eq.~13! is almost equal to that ofPfree→stick,
Eq. ~12!. The only difference is the occurrence of the ter
exp@Fwall#. This observation explains why the long time lim
iting behavior in the right graph of Fig. 2 is that of a Gaus
ian curve. The relation can be understood by looking at
2-4
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equilibrium situation. In case of equilibrium, detailed ba
ance is obeyed between the position at the wall and any p
in space. This means that the probability density for a p
ticle to be at the wall and to end up at a positionx after one
time step equals the probability for the opposite situation

Pwall
EQ pstick→free~Dt,x!5pfree

EQPfree→stick~Dt,x!, ~16!
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substituting Eq.~4! gives the relationship found.
The last probability distribution needed is that of a fr

particle that, after a time step, is also free (x0.b and x
.b). Again, one should note that this does not exclude
possibility that at a certain intermediate moment in time
particle has been sticking to the wall. This probability de
sity is given by
pfree→free~Dt,x,x0!5 lim
b→0

G~Dt,x,x0!

5
2

p
exp@Fwall#

3E
0

`$cos~ l̃exp@Fwall#x!2l̃sin~ l̃exp@Fwall#x!%3$cos~ l̃exp@Fwall#x0!2l̃sin~ l̃exp@Fwall#x0!%

l̃211

3exp@2l̃2exp~2Fwall!Dt#dl̃

5
1

xchar
exp@ x̃1 x̃01D t̃ #erfc F x̃1 x̃012D t̃

2AD t̃
G1

1

xchar

1

2ApD t̃
S expF2

~ x̃2 x̃0!2

4D t̃
G2expF2

~ x̃1 x̃0!2

4D t̃
G D .

~17!
he
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The second contribution in the last expression, i.e., the a
symmetrized Gaussian, is the ‘‘survival’’ probability densi
one would obtain in the case of an absorbing wall. It, the
fore, denotes the probability density for the case that ther
no interaction with the wall within a time stepDt. The first
contribution is thus the probability distribution for the ca
that there is at least one interaction with the wall. This co
tribution is equal to that of the particle starting at the wa
Eq. ~13!, with x̃01 x̃ substituted forx̃. This can be inter-
preted as follows. If one knows there is at least one inter
tion with the wall, the particle has to diffuse over a distan
x0 to reach the wall, and subsequently a distancex from the
wall to the final position, thus a total distancex1x0. For the
probability density it does not matter where in the interval
lengthx1x0 the interaction with the wall takes place. Ther
fore, the probability distribution for the wall interaction a
the initial position equals that of interaction somewhe
within this interval.

III. THE SIMULATION ALGORITHM

In the system of Brownian particles in the neighborho
of a sticky wall, one has to account for two kinds of pa
ticles, namely, the particles that are sticking to the wall a
the free particles. Due to the substantial stickiness of
wall, it will be macroscopically occupied by sticking pa
ticles. In a Brownian dynamics simulation of particles ne
~or on! a sticky wall, at every time step two operations ha
to be performed. For each of the particles one has to ch
whether it will stick at the wall after the time step. If this
ti-

-
is

-
,

c-
e

f

d
e

r

ck

not the case, the new position of the particle in~free! space
has to be determined.

The probability that a particle, initially located atx0, will
end up at the wall after a timeDt is Pfree→stick(Dt,x0) ~where
x050 corresponds to a particle initially on the wall!. To
determine whether this particle will stick at the wall after t
time step, we draw a random number between 0 and 1. If
number is less thanPfree→stick(Dt,x0) it will be located at the
wall after the time step. Otherwise it is considered free a
the time step.

If the particle turns out to be free, we have to perform
random move. As explained in Ref.@1#, for a valid @O(Dt)#
Brownian dynamics algorithm only the zeroth, first, and s
ond moments of the probability distribution of the particle
displacement are needed, i.e.,

^ x̃0&5E
0

`

pfree→free~D t̃ ,x̃,x̃0!dx̃512Pfree→stick~D t̃ ,x̃0!,

^x̃1&5E
0

`

x̃pfree→free~D t̃ ,x̃,x̃0!dx̃

52112A t

p
expF2

x̃0
2

4 D t̃
G1~11 x̃0!erf F x̃0

2 AD t̃
G

1exp@D t̃ 1 x̃0# erfc F 2 t1 x̃0

2 AD t̃
G , ~18!
2-5
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^ x̃2&5E
0

`

x̃2pfree→free~D t̃ ,x̃,x̃0!dx̃

5224AD t̃

p
expF2

x̃0
2

4 D t̃
G12D t̃ 1 x̃0 ~21 x̃0!

22~11 x̃0!erf F x̃0

2 AD t̃
G22 exp@D t̃ 1 x̃0#

3erfc F 2D t̃ 1 x̃0

2AD t̃
G .

Its random step to be taken from the distribution of its p
sible displacements is sufficiently well characterized by
mean displacement,f 1ADDt, plus a random displacemen
with a known root-mean-square value,f 2ADDt,

DX5 f 1S X

ADDt
,

Dt

tchar
DADDt1 f 2S X

ADDt
,

Dt

tchar
DADDU.

~19!

HereDU is a stochastic increment with mean zero and va
anceDt, which is not necessarily Gaussian. For generat
the results presented in this paper we used a very sim
expression forDU; a distribution consisting of two delta
peaks with equal weights. The functionsf 1 and f 2 are related
to the moments of the displacement via

f 1S X

ADDt
,

Dt

tchar
D 5

1

ADDt
F ^x1&

^x0&
2x0G ,

f 2S X

ADDt
,

Dt

tchar
D 5

1

ADDt
A^x2&

^x0&
2F ^x1&

^x0&
G 2

. ~20!

In these expressions the factors^x0& correct for the fact that
a free particle may stick to the wall, so that its probabil
distribution is not normalized, and averages have to be
rected for this effect. Although there are four variables in
problem (D, Fwall , x0, andDt), the scaling shows that an
situation can be characterized by a proper scaling off 1 and
f 2, which are dimensionless functions of two variables on
For the case of a Brownian particle in free space, the va
of these functions aref 150 and f 25A2, respectively. In
Fig. 4 we plotted these functions versus the scaled in
position, x0 /ADDt, for different values ofDt/tchar. One
sees that for large values of this ratio the wall appears alm
fully reflective over the course of the time step@compare
with Fig. 3 in Ref.@1##. This is caused by the fact that th
average residence time near the wall due to its stickines
much smaller than the chosen total time step. However,
very small values of the time step, the wall behaves m
more like an absorbing wall~compare with Fig. 1 in Ref.
@1#!.

Substitution of the analytic expressions given by Eq.~18!
into Eq. ~20! gives rather complicated expressions. In t
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simulations we use a interpolation function forf 1() and f 2()
as function of the distance to the wall, for fixedDt. Only
distances up toA5DDt, are treated that way. Beyond th
distance the particles do not feel a noticeable influence of
wall during a time step. The Brownian dynamics algorith
makes use of these interpolation functions and is almos
efficient as a conventional bulk Brownian dynamics simu
tion. It has O(Dt) global discretization errors instead o
O(ADt) errors for a naive treatment of the wall, notwith
standing the fact that a naive treatment of a sticky wall
quite difficult to establish.

IV. AN EXAMPLE

As an example we consider a system of particles in
one-dimensional box, of which one wall is sticky while th
other one is fully reflecting. At the start of the simulation th
particles are homogeneously distributed over the box
none of the particles is sticking to the sticky wall. The tim
dependence of the fraction of the particles that sticks to
wall is then monitored.

As mentioned before, in the simulations we usekT51
and D51. The only nondetermined dimension left is th
length scale. We fix this length scale by choosingFwall50,
which givesxchar51 ~and becauseD51 alsotchar51). Note
that the choiceFwall50 does not mean that the wall is no
‘‘sticky.’’A nonsticky wall corresponds toFwall5`. The sys-
tem is know characterized by one free parameter,L, which is
the distance between the two walls.

The evolution of the system proceeds in two steps. F
the region near the wall is depleted. There will be a qua
tationary equilibrium between the number of particles stic
ing to the wall and the concentration profile near the wa
This equilibrium will be established in a time proportional
tchar, the ‘‘retention time’’ of the particles near the stick
wall. Then the bulk concentration profile will slowly adapt
the fast dynamic equilibrium near the wall. At a certain d
tance from the sticky wall~a fewxchar), the density profile of
the bulk will equilibrate toward a uniform distribution. In
box of macroscopic dimensions the characteristic time
this latter process will be much larger than that for atta
ment of the dynamic equilibrium near the sticky wall, as
will be related to the size of the box. Clearly, this time sca
will be of the order ofL2/D, whereL is the size of the box.

The results of this simulation are plotted in Fig. 5. T
box size is chosen asL53. The equilibrium fraction of par-
ticles sticking to the wall will then be

fwall
EQ 5

exp@2Fwall#

exp@2Fwall#1L
5

1

4
. ~21!

This is indeed the limiting value obtained by the simulation
The simulations were performed for three different valu

of the time step;Dt51021, 1022, and 1023 and were taken
over an ensemble of 106 particles. It is clear that the time
discretization error is small, since the curves almost sup
impose. The second graph in Fig. 5 shows the evolution
the average value ofx coordinate of the free particles. Thi
illustrates the depletion of the region near the wall. Ov
2-6
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time the remaining free particles establish a homogene
distribution over the box again. Therefore not only at t
start, but also in the end the concentration profile of the f
particles is uniform, their average position being 1.5.

V. DISCUSSION AND CONCLUSIONS

In this paper we presented a way to describe ‘‘stic
boundaries’’ that is very useful for Brownian dynamics sim
lations, and possibly also for other mesoscopic simulat
techniques. The ‘‘sticky property’’ is described by a deep a
steep potential well, adjacent to a reflecting boundary.

We have chosen to remain in the Brownian regime. T
means that the real potential, which we model, varies slo
at the scale of the particle’s free path. Therefore the part
trajectory has a fractal~random walk! nature everywhere
and the crossing of the potential barrier will not be of
ballistic nature. We think this is the correct limit for th
treatment of many boundary interactions in liquids and s
condensed matter. In this limit the scaling of the characte
tic time, given by Eq.~10!, is different from the well-known
Arrhenius scaling~which denotes a ballistic crossing of th
boundary when the momentum is large enough!.

For the boundary to be ‘‘sticky’’ only when in contac
with the particle, we have studied the appropriate limiti
case, where the width of the potential well approaches z
and its depth becomes infinite, in such a way that the f
energy associated with this potential is kept constant. Th
a purely mathematical simplification. We stay in the Brow
ian regime even though we approximate the barrier by
infinitely steep potential. The fact that this limit can be tak
is essential for the coarse graining approach inherent to t
simulations. If the width of the potential would be kept finit
one would introduce a very small time scale into the syst
~namely, the diffusion time corresponding to that width!. In
simulations this time scale must then be resolved. This wo
limit the discretization time step to very small values. In o
approach this problem is avoided.

Indeed, the limiting case of a zero width of the potent
well is in the spirit of the Brownian dynamics method. In th
method the correlation time of momentum equilibration
particles is also taken to be zero. As a result, the sma

FIG. 1. The sticking probabilities for a particle that is initially
the wall and for particles that are initially free, at different distanc
from the wall (x0 /xchar50.5,1.0,1.5,2.0).
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remaining characteristic time scale is the time needed to
fuse over the next smallest characteristic length scale in
system. In most cases this allows for using time steps tha
orders of magnitude larger than those used in simula
techniques in which the full Newtonian equations are solv
such as molecular dynamics. The process introduced in
paper therefore constitutes a course graining of the s
range interactions, by setting the time scales associated
these interactions equal to zero.

Note that this way of course graining, which we wou
like to call ‘‘hardening coarse graining,’’ in a sense is opp
site to coarse graining procedures that are commonly u
In many methods, such as the dissipative particle method@2#,

s

FIG. 2. The position dependence of the sticking probabi
Pfree→stick(Dt,x0) for several values ofDt, scaled in two ways,
corresponding to its short~left! and long~right! time behavior. The
order of the curves is the same as the order of the labels ne
them.

FIG. 3. The probability density for a particle that is initiall
sticking to the wall is given by the solid lines. The sticky wall
positioned atx50 ~solid vertical line!, so the values to the left o
this point have no real physical meaning. The long time behavio
a particle starting at this sticky wall is equivalent to that of a free
diffusing particle~no energy barrier!, starting from a reflecting wall,
which is positioned atx52xchar ~dashed vertical line!. Note that
the original wall now only indicates the origin of the position ax
but has no physical ‘‘wall properties’’ anymore. In this case t
probability density would be a reflected Gaussian with its cente
x52xchar. This curve is given by the dotted lines.
2-7
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FIG. 4. The dimensionless mean displacementf 1 and the root-mean-square displacementf 2 @see Eq.~20!#, versus the scaled initia
distance from the sticky wall, for several values ofDt/tchar (1025 to 104). For time steps much smaller than the characteristic or reten
time the wall behaves as an absorbing wall, whereas for much larger time steps it behaves as a reflecting wall.
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to-
one introduces ‘‘effective particles,’’ which consist of a num
ber of physical particles and which have a larger size. T
interactions between these particles are averaged, softer,
those between the constituent, original particles. This tr
ment is what we would like to call ‘‘softening coarse grai
ing.’’ It means that the time scales associated with inter
tions are madelarger in this procedure~instead of being put
to zero!. This softening causes all ‘‘hardness’’ to disappe
from the coarse-grained system. For some systems this
not invoke problems, but for others it means that essen
features might be lost in the process. Important example
the latter case are systems with topological constraints s
as glasses and entangled polymer systems. We expect t
‘‘good’’ coarse graining treatment of such systems ne
both kinds of coarse graining. Some interactions, the m
local ones, can be replaced by interactions with time sc
zero, such as used in this paper, others, longer ranged i
actions, probably should become softer in the appropr
coarse graining process. Therefore, in a way, the method
sented in this paper can be considered a next step in
process of progressive coarse graining operations.

The sticky boundary introduced in the current paper i
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very ‘‘pure boundary’’ in the sense that it is characterized
one fundamental parameter only, namely, the ‘‘wall free e
ergy,’’ which is free from ‘‘local features’’ such as the precis
shape of the potential. Therefore we expect our approac
have several attractive applications. The most trivial one
proper description of interactions of Brownian particles w
a ‘‘sticky’’ wall. After connecting a number of these particle
by springs, one can study the interaction of a polymer wit
‘‘sticky’’ wall. The situation becomes even more interestin
if the particles themselves are made sticky. This opens up
possibility to correctly simulate solvent quality in a polym
solution, using pure Brownian dynamics simulations a
very short range interactions. A way to do this is to u
particles with a certain volume and make their surface stic

If different beads are given different sticky properties, o
can simulate surfactant systems. Maybe even the main
tures of proteins, containing chemical groups exhibiting
kinds of mutual~local! interactions, can be modeled in th
way. Of course, some issues have to be resolved first.
issue is the difference between a flat wall and a curved be
Another one is how to properly treat particles that stick
gether in clusters.
l.
step
FIG. 5. The left graph shows the time evolution of the fraction of particles at the sticky wall, in a box of sizeL53, having one sticking
wall and one reflecting wall. The simulation was started with a homogeneous distribution of 106 particles, none of them sticking to the wal
For the parameters we choseFwall /kT50 andD51. The three almost identical curves correspond to different choices for the time
(Dt51021, 1022, and 1023). In the right graph the time evolution of the mean position of the particles in thebulk is shown. This
demonstrates the initial depletion of the region near the wall, leading to a mean value for thex coordinate of the free particles larger thanL/2.
Over time, the remaining free particles establish a homogeneous distribution over the box again.
2-8



s
th
ia
n
s-
d
ir-
n
ar
g

t

ng
e

n,

a

t
on
y

e
ll.

atu-
n

ill

-
ra-

nc-

ent,
l to

ility
e
e

tant
n-

rt of
tor

of
e
on

t.
duct
t

ng

this
en-
s,

the
e-
ro

ral

EFFICIENT BROWNIAN DYNAMICS . . . . II. . . . PHYSICAL REVIEW E 66, 056702 ~2002!
Approaching the end of this paper we would like to stre
again that the method we introduced here fully relies on
fundamental idea that one can perform accurate Brown
dynamics simulations if only the zeroth, first, and seco
moments of the probability distribution of the particle di
placement are sampled correctly. This idea was introduce
Ref. @1#. In any case it is clear that it would have been v
tually impossible to obtain the results presented here by o
using a ‘‘naive algorithm’’ to treat the particle behavior ne
the ‘‘sticky’’ boundary. This would have meant introducin
the very small time scale discussed above.
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APPENDIX A: THE GREEN FUNCTION
FOR A SQUARE POTENTIAL WELL NEXT

TO A REFLECTING WALL

In this appendix we consider the problem of a diffusi
particle in a square potential well adjacent to a wall. Gen
ally, this problem is described by

]p

]t
52“• j, ~A1!

wherep is the probability distribution~the ‘‘concentration’’!
of the particle andj is its probability flux ~the ‘‘flow den-
sity’’ !. In dimensionless, one-dimensional, form we obtai

]

]t
p~x,t !5~Lp!~x,t !, ~A2!

whereL is the operator

~Lp!~x,t !5
]

]x Fp~x,t !
]

]x
U~x!1

]

]x
p~x,t !G , ~A3!

where the divergence has become a simple derivative,
the ~negative of the! flux is given by the two contributions
between the square brackets. The first term stems from
force on the particle exerted by the potential field, the sec
gives the~pure! diffusion contribution, due to the probabilit
~‘‘concentration’’! gradient.

We now assume that the particle resides on the positivx
axis. At x50 we position an impenetrable, reflecting wa
Further, the dimensionless potentialU(x) is taken to be a
square potential,

U~x!5H 2E for x,b,

0 for x.b.
~A4!

The formal solution of this problem is given by

p~x,t !5E
0

`

G~ t,x,x0!p~x0,0!dx0 . ~A5!
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Further on we show that this formal expression appears n
rally. For our aim of describing the motion of the Brownia
particle over the period of a time step, Eq.~A5! is very
useful. Since we know the initial position,x0, of the particle,
its probability distribution att50 is given by a delta func-
tion. This means that in the end the formal expression w
reduce to the desired form,

p~x,t !5G~ t,x,x0!. ~A6!

We return to this point later.
To solve Eq.~A2! we note that it is linear in the probabil

ity densityp. We can therefore apply the method of sepa
tion of variables. First we assume that the solution forp can
be written as a product of time and position dependent fu
tions, e.g.,p(x,t)5c(t)f(x). We substitute this solution
and then divide both sides of Eq.~A2! by this product. This
gives

1

cl

]cl

]t
5

1

fl
Lfl[2l2. ~A7!

The right- and left-hand sides each depend on a differ
independent variable. Both terms must therefore be equa
some constant. Due to the diffusion process, the probab
distribution must ‘‘spread,’’ e.g., its time derivative must b
negative. We used this ‘‘physical intuition’’ to introduce th
square and the minus sign. The subscriptl takes into ac-
count that for every possible value of the separation cons
l we obtain a different, valid solution. For the time depe
dent factor inp(x,t) we find immediately

c~ t !;exp@2l2t#. ~A8!

For the position dependence we must solve the other pa
Eq. ~A7!, e.g., construct the eigenfunctions of the opera
L, given by Eq.~A3!,

Lfl52l2fl . ~A9!

If the operatorL is self-adjoint, one obtains a complete set
orthogonal eigenfunctions$fl%. In this case one can use th
theory of self-adjoint operators to form the Green functi
using the eigenfunctions. For arbitraryU(x) the operatorL
is not self-adjoint for the ordinary functional inner produc
Nevertheless, one can easily find a generalized inner pro
@given by Eq.~A21!#, such that the operator is self-adjoin
for this inner product and the theory is applicable. Havi
noted this we can safely proceed.

The potentialU(x) is flat, except for the jump atx5b.
This means that in both areas separated by this jump
operator reduces to a simple second derivative. The eig
functions of L are therefore ordinary sines and cosine
which have to be correctly matched at the jump. For
interval @0,b# the appropriate solution must be a cosine, b
cause of the reflecting boundary condition, implying a ze
probability flux on the wall. Therefore, we find as a gene
solution to Eq.~A9!,
2-9
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fl~x!5H coslx for x,b,

a coslx2b sinlx for x.b.
~A10!

The appropriate choices fora andb are found by consider
ing the probability fluxj (x) at the jump of the potential,

j ~x!52p~x!
]

]x
U~x!2

]

]x
p~x!. ~A11!

Integrating Eq. ~A1! over a very small interval@A,B#,
around the jump in the potential (A,b,B), we obtain an
expression for the time derivative of the number of partic
in this interval.

]

]tEA

B

p~x!dx52E
A

B] j

]x
dx5 j ~A!2 j ~B!. ~A12!

It is clear that ifB2A→0 ~keepingA,b,B), the left-hand
side of this expression must become zero. Otherwise
ticles would suddenly ‘‘disappear’’ at the potential jump. T
right-hand side then tells us thatj must be continuous. Asj
contains at least oned-function @the derivative of a step
function, cf. Eqs.~A4! and ~A11!#, the probability densityp
should also contain a step function, to cancel this singula
Assuming that the change in the probability density on b
sides of the potential jump will be governed by Boltzman
law, we propose for the probability density a form given

p~x!5 f ~x!exp@2U~x!#, ~A13!

wheref (x) is a continuous function ofx. Substitution in Eq.
~A11! using Eq.~A4! gives

j ~x!52 f exp@2U~x!#Ed~x2b!2
] f

]x
exp@2U~x!#

1 f exp@2U~x!#Ed~x2b!52
] f

]x
exp@2U~x!#.

~A14!

Indeed, this removes thed function singularity inj (x), as f
is continuous. Further,j will be continuous inx5b, provided
that

lim
x↑b

] f

]x
exp@E#5 lim

x↓b

] f

]x
. ~A15!

Applying these conditions, for every eigenfunction individ
ally, one finds that

lim
x↑b

exp@2E#fl~x!5 lim
x↓b

fl~x!, ~A16!

lim
x↑b

]

]x
fl~x!5 lim

x↓b

]

]x
fl~x!.

After substitution of Eq.~A10! and solving the equations fo
a andb, one finds
05670
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fl~x!

5H coslx for x,b,

~sin2lb1cos2lb exp@2E# !coslx

2sinlb coslb~12exp@2E# !sinlx for x.b.

~A17!

Using straightforward trigonometry rules one can obtain
other equivalent expression for the casex.b,

fl~x!5S 1

2
1

1

2
exp~2E! D coslx

2S 1

2
2

1

2
exp~2E! D cosl~2b2x!. ~A18!

Now we can write the general solution forp(x,t), as a su-
perposition of all solutions for the possiblel values,

p~x,t !5E
0

`

C~l!fl~x!exp~2l2t !dl, ~A19!

whereC(l) gives the contribution of every eigenfunction
the final solution. Its precise form is determined by the init
condition, as we will see. Settingt50 we find

p~x,0!5E
0

`

C~l!fl~x!dl. ~A20!

The precise form ofC can now be found by taking the prope
functional inner product involvingp(x,0) and the set of
eigenfunctions. One should note that the operatorL is not
self-adjoint for the usual functional inner product, but it
easy to show it has this property, (Lf ,g)5( f ,Lg), for the
generalized inner product with the proper weight functio
defined by~see Ref.@3#!

~ f ,g!5E
0

`

exp@U~x!# f ~x!g~x!dx, ~A21!

where f and g obey the same, homogeneous boundary c
ditions. The generalized inner product, Eq.~A21!, of two
eigenfunctions is then given by

~fl ,fl8!5
p

2
~sin2lb1exp@22E#cos2lb!d~l2l8!

[A~l!d~l2l8!. ~A22!

Now we can determineC(l), by taking a functional inner
product of Eq.~A20! with an eigenfunction,
2-10
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E
0

`

exp@U~x!#fl8~x!p~x,0!dx

5E
0

`

C~l!E
0

`

dx exp@U~x!#fl8~x!fl~x!dl

5E
0

`

C~l!A~l!d~l2l8!dl5A~l8!C~l8!.

~A23!

Combining Eqs.~A19!, ~A20!, and~A23!, we can write

p~x,t !5E
0

`
E

0

`

dx8exp@U~x8!#fl~x8!p~x8,0!

A~l!
fl~x!

3exp~2l2t !dl, ~A24!

which has indeed the form of Eq.~A5!, so that we can finally
write the Green function as

G~ t,x,x0!5
2

pE0

`

exp@U~x0!#
fl~x!fl~x0!

sin2lb1exp@22E#cos2lb

3exp~2l2t !dl. ~A25!

APPENDIX B: THE STICKY BOUNDARY CONDITION
FOR THE FOKKER-PLANCK EQUATION

Away from the ‘‘sticky’’ wall the Brownian particle dif-
fuses freely. Therefore, everywhere in space the probab
distribution,pfree(x,t), should obey the Fokker-Planck equ
tion. The wall is macroscopically occupied, with probabili
Pstick(t). Particles at the wall can become free particles a
vice versa. To get a closed set of equations forpfree, a
boundary condition is needed that takes into account
wall interaction. The probability flux at the wall must equ
the decrease per unit time of the sticking probability at
wall, thus

j ~ t,0!52
]

]t
Pstick~ t !. ~B1!

During a time stepDt the probabilities evolve accordin
to

Pstick~ t1Dt !5Pstick~ t !Pstick→stick~Dt !

1E
0

`

pfree~ t,x0!Pfree→stick~Dt,x0!dx0 , ~B2!
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pfree~ t1Dt,x!5Pstick~Dt !pstick→free~Dt,x!

1E
0

`

pfree~ t,x0!pfree→free~Dt,x,x0!dx0 .

When trying to calculatej (t,0) by inserting Eq.~B2! into Eq.
~B1! and using the detailed expressions for the transitio
probabilities, one encounters difficulties. For instance, wh
using the small time expression Eq.~11!, one gets a diver-
gent result~as 1/ADt in the finite difference approximation!.
The reason for this problem is that the initial values
Pstick(t) and pfree(t,x) cannot be chosen independently. T
divergent result indicates an infinitely fast ‘‘equilibration’’ o
initial conditions if they do not obey the interdependence

The correct boundary condition can be most easily
rived using the jump conditions of the square well poten
Eq. ~A16!. This condition states that an eigenfunction befo
and after the jump always differs a factor exp@2E#. Since
any solution is a sum of eigenfunctions, this means that
factor is the same for any function. Furthermore, in the lim
of b→0 the well has such a small gap that it is alwa
internally equilibrated, i.e., the probability density is consta
in the well. By integrating overx(0,x,b) one then finds
that

pfree~ t,0!5exp@Fwall#Pstick~ t !. ~B3!

Combining this expression with Eq.~B1! one obtains the
boundary condition forpfree,

]

]t
pfree~ t,0!52exp@Fwall# j ~ t,0!5exp@Fwall#

3H 2vpfree~ t,0!1D
]

]x
pfree~ t,0!J , ~B4!

wherev is a drift velocity, imposed by additional, determin
istic forces, if present. Two extreme cases are the fully
sorbing and the fully reflecting boundary conditions. Fu
absorbing means thatFwall→2`. In this case Eq.~B3! gives
that pfree(t,0)50 @sincePstick(t) is bounded#. The fully re-
flecting limit is obtained forFwall→`, here Eq.~B4! gives
that j (t,0)50.
n
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