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Efficient Brownian dynamics simulation of particles near walls. Il. Sticky walls
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In this paper we treat a boundary condition, the “sticky boundary,” which appears to be quite useful in
mesoscopic models. The sticky boundary is modeled as an infinitely deep, infinitely narrow, potential well
adjacent to a reflecting boundary. The free energy corresponding to this boundary is finite. The boundary
condition, which can be viewed as an intermediate between the absorbing and reflecting boundary condition,
may have many applications, e.g., for the simulation of the partial adsorption of polymer molecules to walls
and for the modeling of solvent quality. We will derive an efficient Brownian dynamics algorithm, capable of
handling interactions of a diffusing particle with a sticky wall. Our approach avoids the large discretization
errors that occur in the simulation of boundary interactions within the “standard” Brownian dynamics ap-
proach. The essence of our method was presented beforf@eters and T. Barenbrug, Phys. Reut& be
published]. The treatment of the wall as proposed here is quite general, and therefore not limited to the use
within Brownian dynamics. In other simulation techniques which aim at treating the dynamics of mesoscopic
particles near walls, we expect it to be of use as well.
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I. INTRODUCTION £ 1 (b U(x)
PW%:ZJ'O exp{ - W dx. (2)

d X] , 3

: 4

In this paper we discuss the “sticky” boundary condition.
We assume that the “stickiness” of the wall can be describeq\te that throughout this paper we denote a probability by
by a narrow but deep potential well, adjacent to a reflecting p » and a probability distribution by p.” If we define the
wall. If a particle resides in this well, we say it “sticks to the «yq|| free energy” by

wall.” Otherwise the particle is called “free.” The wall itself

obeys reflecting boundary conditions. The width of the well b U(x)

is assumed to be much less than the typical displacement of Fuwan= —kTIn‘ fo EXF{ T

the Brownian particle during the chosen time step. However,

the width of the well must be sufficiently large and spatialihe ahove probability can be expressed as

variations in the potential must be slow enough, compared to

the particle’s free path, so that the Brownian description is g0 _ 1 Fwall £o Fwai

valid everywhere. Furthermore, the potential is assumed to PwaII:ZeX T kT | T PrePXH T T

have no long-range contributions.

For any potential fieldJ(x), the equilibrium probability ~where the last equality is a simple result of Et) with U
density distribution of a particle in this field is given by the =0. We will discuss some implications of E(R) later.
well-known Boltzmann distribution We are interested in phenomena on length scales much

larger thanb. We postulate that in this regime the wall free

energyF . is sufficient to describe the wall interaction. For

, (1)  equilibrium properties this is obviously true, whereas for the

dynamical ones it is less obvious. On the one hand, one

could argue that by changing both and b, while leaving
where Z, the total sum of states, is a normalization factor.F,,, unchanged, quantities such as escape rate might
Since we assume that the potential well is narrow comparedhange. On the other hand, it is unlikely that such a change
to the length scales resolved by the description, this fullof the internal variables of the well would influence the en-
probability distribution is not a very useful quantity. Much trapment rate, under the assumption that the Brownian
more interesting is the total probability that a particle sticksmoves of the particle are much larger thanif only the
to the wall, i.e., resides somewhere in the potential well. Thisescape rate is influenced while the entrapment rate remains
probability can be found by integrating over the width of thethe same, the equilibrium statistics would change by this
well, denoted byb, operation. Since the equilibrium state does not change when

Fwan 1S kept constant, the dynamics of the system cannot
change either. We therefore draw the conclusion that in the
*Electronic address: fpeters@science.uva.nl regime of relatively largetime) steps the dynamics of the
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system are governed I, only. Note that this argument is derivations, we take the limits— 0 andE— o, while keep-
a purely qualitative one. In fact, in the pure diffusion regimeing F 4, constant, to arrive at expressions that are appropri-
considered here one cannot even unambiguously define eate for our model of a “sticky wall.” For all computations
cape and entrapment rates. We will return to this point furwe usekT=1 andD=1. This does not make the equations
ther on. fully dimensionless. Later we will also introduce a character-
istic time t¢,,, Which will be related to a characteristic
Il. WALL INTERACTION DYNAMICS length scalex.n, by means of the diffusion constant.

i he ab | h | Additionally, in Appendix B we have considered this
Bu.' Ing on the above arguments we postuiate that only,, o limiting case, to construct the appropriate sticky
Fwar is important for the description of the dynamics on

. ) ndar ndition for the diffusion ion. Th lution
length scales much larger than the widbhof the potential boundary condition for the diffusion equatio e solutio

well. Therefore one has some freedom in choosing the func(-)f the Fokker-Planck equation with this boundary condition

tion U(x). We make the convenient choice of a square weIICOUId k_)e used _for an alternative approach to the Brownian
potential, dynamics algorithm as presented here.

—E for x<b,

— A. Sticking probabilities
Ux) 0 for x>b. ©

First we consider the probability that a particle that

In the preceding section we already stressed the fact that trdicked to the wall at timé=0 also sticks to the wall at time
wall potential should be sufficiently smooth for the Brown- t=At. The resulting probability includes possible intermedi-
ian description to be valid everywhere. Therefore, this potenate states in which the diffusing particle is free and/or stick-
tial should be understood as a mathematically conveniering within the chosen time step. The calculated probabilities
approximation of such a smooth potential. Then the wall freesolely refer to the situations at the start and at the end of the

energy is giverfsee Eq(3)] by time step.
Before the limitb— O is taken, a sticking patrticle is char-
Fwar= —E—KkTInb. (6)  acterized by the fact that it resides in the wely<<b. The

) ) chance that a particle also sticks at titreAt is equivalent
In our previous papefrl], we pointed out the reason for 4 the probability that it resides at any positiercb at that

the large discretization error of naive algorithms used for thgje. Using the Green function, E¢A25), we therefore find
simulation of Brownian particles in the vicinity of walls: the

systematic and substantial underestimation of diffusive inter- ) b )
actions with the wall within every time step of the Brownian Pstick—sticd At)= lim [ G(At,X,Xo)dx with xo<<b

dynamics algorithm. The solution of this problem is straight- b—00
forward. A correct discretization of the stochastic differential 2 = exg —E]sin\b cos\x,
equation(SDE) consists of the generation of displacements = —lim

0 A(siPAb+exd —2E]cog\b)

according to a conditional probability distribution that ap- Th-0
proximates the true distribution up to sufficient order in the
time step. For the particle near a flat absorbing or reflecting
wall, it was shown that any distribution with the correct ze-

xexfg — N2At]dn

2 (= exdFyal

roth, first, and second momengahich does not cross the =—| ——————exg —\?At]d\
boundary gives a correct discretization with a global accu- mJo N2+ exf 2F yail
racy of O(At). 5 1

In this paper essentially the same is done, although the _ * 2 ~
situation has become more complicated. Again the numerical 7)o N2+1 X~ A At eXp2F ) JdN
approximation to the SDE for the particle must quantitatively
contain all relevant aspects of its motion, but now with re- =exq At exp 2F ) lerfd vAt exp(2F yan) |
spect to the sticky wall. Due to the presence of the potential _ _
well, these aspects now must include not only displacements, =exd At]erfc [\/A—t], (7)

but also the possible transitions, depending on its starting

position, e.g., remaining stuck to the wall, being attached

during the time step, being detached, and remaining free. where we first performed the integral overthen substituted
The central quantity needed for the calculation of theseEq. (3) for the wall free energy and then took the linfit

probabilities and probability densities for the motion and— 0. Note that thex, dependence drops out when taking the

transitions of the Brownian particle with respect to the stickylimit b— 0, which means that the statement: “at the wall” is

wall, is the Green functionG(At,x,Xg), associated with the unambiguous in this limit. The function effids the comple-

chosen system. In Appendix A an expression for this Greementary error function, i.e., eff¢=1—erf[].

function is derived. By means of this expression, the differ- The symbols indicated by the tilde are made dimension-

ent transition probabilities and probability densities are deless by means of the characteristic time and the characteristic

rived in the following two sections. As the last step in theselength scale, by means of
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Note thatt.., does not have the well-known Arrhenius
shape. In the case of the Arrhenius scaling the time scale is
the Boltzmann factor divided by a collision frequency. This
scaling is only valid if the width of the potential barrier is
smaller than the mean free path. If a particle approaches the
X=X — F et /K] (9) barrier and has a sufficiently large kinetic energy it will es-
cape. In our case, however, we are in the diffusion regime.
The width of the real physical barriére., as opposed to our
square potential approximatipis much wider than the par-
Sicle’s free path. Therefore the momentum of the particle
reequilibrates before the barrier is fully crossed. It will not be
rossed in a ballistic manner. This kind of wall interaction is
probably a good approximation for many surface phenomena
in liquid or soft-condensed systems.
In the Brownian regime the particle trajectory remains a
fractal object. Looking at the sticky wall, the smaller the

part. In this way one should integrate Fh.e full Boltzmanntime step one chooses, the more escapes and entrapments
factor also over momentum space and divide by the eIemerb-ne will find in a certain fixed period of time. However, in

tary volume of phase space, which is given by quantum me- : oot :
. . m h rticle will stick he wall in
chanics to be the Planck constdntThis procedure would ost cases the escaped particle stick to the wall aga

Ve rise 1o th lizati f the int | within the | after the next time step. Therefore, these escapes remain un-
give rse o the normalization ot the integral within th€ 109a- 1, ;004 if one uses a larger time step. Counting escapes and
rithm by a thermal de Broglie wavelength. This wave-

. Y . entrapments as such is therefore not very useful.
length has no physical significance in our problem. The full For the limiting cases of very small and very large time
free energy is only changed by a constant offset compared t&eps one can find simple approximations
the expression we use here. Using the full expression of the ' '
free energy and. one can construct a characteristic length
scale for the problenwhich is of course independent bj.

x= AXehar t= t/tchar x= X/ Xchar- 8

The characteristic length scale is given by

At first sight one might think there is something wrong con-
cerning the dimensions in this equation. This is not the cas
A careful look at exp—F,,,/kT], using Eq.(6), reveals that
this quantity has the dimension of length. The cause for thi
is the definition ofF,,; in Eq. (3). Here we take a logarithm
of a dimensional quantitywith dimension length This
could have been prevented by computing a full partition
function of the wall region and not only the configurational

This length scale is exactly the same characteristic length [AT for At<t

scale as the one given by E®). Note that the free energy 1-2 - char
defined by Eq. 3 is not ill defined in a mathematical sense. Pticko stick At) = (11
The reason is that the multiplication of units and numlgers char for Atst

other unit$ is communicative. Therefore, the ordinary rules V AT char-

for mathematical functions such as the logarithm are obeyed
for these quantities.

The characteristic timég,,, is defined as the mean time For At=0 the time derivative does not exist, which illus-
needed to diffuse a distaneg,, i.e., trates that ndinitial) escape rate can be defined.

The second case we consider is the probability that a par-
ticle in free space at time O will be entrapped by the wall at

Xehar  XH — 2F e /KT]
' time At. This probability is given by

tchar= T = D

(10

b
Preestick At,Xg) = Iimf G(At,X,Xg)dx, with x<b
b—0 0

2 foosin)\b (siAb+ exgd — 2E]co$\b)cosAx,—{sin\b coshb(1—exd — E])}\ sin\xq

=—Ilim
Th0J0 A siPAb+exd —2E]co$\b

X exp(—N2At)dn

ext — N2exp( 2F ) At]dXx

2f°° cog Nexy FyailXo) — Asin(Xexp Fyan]Xo)
mJo N24+1

Xo+ 2A1

2\at |

=exf[Xo+ At ]erf (12)
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where we first performed the integral overthen substituted  ghsorbing wallPy e . apsorf At,Xo) = erfd x/(2DAt)]. For

Eqg. (3) for the wall free energy and then took the lintit |ong times the fully reflecting case is approached. In the
—0. In Fig. 1, Pree .sic{ At,Xo) Is plotted as a function of perfectly reflecting case, of course, no particle will stick to
dimensionless timét/t,,, for several values ofo. the wall. Below we discuss the close relationship that exists

In the limit x,—0 one finds thatPree .sicAt,Xo) ap-  between the results for a sticky and a fully reflecting wall.
proaches g siick( At) . This should be the case, since very

close to the wall the probability of entrapment approaches 1. S
Once entrapped, a particle behaves like a sticking particle, so B. Probability distributions in free space

that the limitxo,—0 behaves in a continuous way. In this section we study the cases opposite to those dis-

In Fig. 2 the spatial dependence Bfiee_sic(At,Xo) IS cussed in the preceding section: particles of which the final
plotted, where the position is made dimensionless by meansosition is not at the wall, but in free space. The state at the
of division by yDAt, which is a measure for average dis- wall is macroscopically occupied and can therefore be de-
placement due to diffusive motion in a tindet. From this  scribed in terms of probabilities. The state in free space must
graph it becomes clear that, in order to describe the walbe described in terms of probability densities. Again there
interaction in a time step correctly, one only needs to conare two cases to be considered. The first is the situation
sider the region within a few distancg® At from the wall.  where the particle starts at the wall and ends up in free space.
In the left graphPee . siic(At,Xo) IS shown. In the right For the particle that starts at the wall, the initial conditions
graph a multiplication factor of/7At/tq,, iS used, corre- arex>b andxy<<b. In this situation the Green’s function,
sponding to the limiting short and long time behavior. TheEq. (A25), in the limit of b—0 and a fixed value oF
short time behavior corresponds to the situation of a fullyreduces to

pstick—>free(At!X) =lim G(At,X,XO)

b—0
2 «€X[ Fyan]COSAX— N\ SINAX
= —exX{ Fyanl exf — A2At]dA
m 0 )\2+ eXF[ZFwan]
2 =CO N exf] Fyan]X) — Nsin(xexy] FyailX) ~ -
= —eXF[ Fwa”] = eXF[_)\ quZFwa”)At]d)\
™ 0 A2+1
1 - X+2A1
= ——ex{d x+At]erfc . (13
Xchar 2VAT
|
One can checkby partial integratiohthat the total probabil- 1 X+ Xepar
ity is correctly normalized, e.g., Papprod A, X) = mex;{ IDAT (15

oc In Fig. 3 we compare this approximation with the analytic
f Psticko freel At,X)dX=1— Pgiick stick( At) . (149 solution Eq.(13) and see that the comparison is very good
0 for longer times. This shows thdty,, i.e., the time the
particle needs to travel the virtual distance behind the wall,
When inspecting Eq(6) once more, one can conclude can be considered a kind of retardation time, i.e., the average
that a sticky wall with characteristic lengt,,, is equivalent  time the sticky wall succeeds in capturing a particle, after
(in its long time behavigrto a “degenerate” potential well which it is able to escape and continue its journey as a free
of width X5 @and no energy difference, i.e5=0 andb particle. For really long times, whexy,,< VDAt, the lim-
=Xchar iN EQ. (6). The latter system can be understood as ifiting curve is also approximated well by a Gaussian curve
behind the original well, at a distaneg,,,, a virtual wall is  with the center ak=0 (instead 0fx=Xpa)-
placed, with fully reflecting properties. This wall, together  Expression Eq(13) is almost equal to that AP cc ., sticks
with this extra distance, appears(@dmos} replace the effect Eq. (12). The only difference is the occurrence of the term
of the potential well, at least for larger diffusion times. The exdF,;]. This observation explains why the long time lim-
probability distribution for a particle released near the virtualiting behavior in the right graph of Fig. 2 is that of a Gauss-
reflecting wall, would be ian curve. The relation can be understood by looking at the
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equilibrium situation. In case of equilibrium, detailed bal- substituting Eq(4) gives the relationship found.

ance is obeyed between the position at the wall and any point The last probability distribution needed is that of a free

in space. This means that the probability density for a parparticle that, after a time step, is also freg¥b and x

ticle to be at the wall and to end up at a positioafter one  >b). Again, one should note that this does not exclude the

time step equals the probability for the opposite situation, possibility that at a certain intermediate moment in time the
EO EQ particle has been sticking to the wall. This probability den-

Pwallpstickﬂfree(Atix): pfreepfre%sticl&Ath)i (16) Sity is given by

pfre%free(AthaXO) =lim G(A'[,X,XO)
b—0

- ;exl{ wall]

y f“{coix ext Fyan]X) = XSin(Xexp F ya]X)} X {cos X expl FyailXo) — Asin(xex Fyan]Xo)}
0 N2+1

X exf — N2exp(2F ya) At]dX

50 ATl X+Xo+2A1 1 1 (X—Xg)? (X+Xg)?
= exgx+xqpt+Atlerfc| ————|+ — eXxg ————=—|—exXpg ———=
Xchar ° 2VAT Xchar 24/ 77AT 4At 4At

(17

The second contribution in the last expression, i.e., the antirot the case, the new position of the particlgfiree) space
symmetrized Gaussian, is the “survival” probability density has to be determined.

one would obtain in the case of an absorbing wall. It, there- The probability that a particle, initially located =g, will

fore, denotes the probability density for the case that there ignd up at the wall after a tim&t is Pyee sic{ At,Xo) (Where

no interaction with the wall within a time stept. The first  Xo=0 corresponds to a particle initially on the walllo
contribution is thus the probability distribution for the case determine whether this particle will stick at the wall after the
that there is at least one interaction with the wall. This coniime step, we draw a random number between 0 and 1. If this
tribution is equal to that of the particle starting at the wall, number is less thaR.e. . sici{ At,Xo) it will be located at the
Eq. (13), with Xo+X substituted forx. This can be inter- Wall after the time step. Otherwise it is considered free after

preted as follows. If one knows there is at least one interacth€ time step.
tion with the wall, the particle has to diffuse over a distance !f the particle turns out to be free, we have to perform a
Xo to reach the wall, and subsequently a distané®m the ~ 'andom move. As explained in R¢fL], for a valid[O(At)]

wall to the final position, thus a total distanke x,. For the ~ Brownian dynamics algorithm only the zeroth, first, and sec-
probability density it does not matter where in the interval ofond moments of the probability distribution of the particle’s
lengthx + x, the interaction with the wall takes place. There- diSPlacement are needed, i.e.,

fore, the probability distribution for the wall interaction at

the initial position equals that of interaction somewhere "

within this interval. <;(0>: fo pfree—»free(AT’;(S(O)d’;(:l_ Pfre%stick(ATi;(O)v

Ill. THE SIMULATION ALGORITHM

~l _ OC~ ~ o~ ~
In the system of Brownian particles in the neighborhood (X)= fo XPiree-fred A 1,X,X0) dX
of a sticky wall, one has to account for two kinds of par-

ticles, namely, the particles that are sticking to the wall and \f F{ }3 B Xo

the free particles. Due to the substantial stickiness of the =—1+2\/—exg — ——|+(1+xp)erf

wall, it will be macroscopically occupied by sticking par- ™ 4 At 2 VAT
ticles. In a Brownian dynamics simulation of particles near

(or on) a sticky wall, at every time step two operations have o 2t+X%,

to be performed. For each of the particles one has to check +exg At+xq] erfc =, (18)
whether it will stick at the wall after the time step. If this is 2 \/E
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- “, —— simulations we use a interpolation function fq) andf,()
(x9)= Jo X“Prree - freel At,X,Xg)dX as function of the distance to the wall, for fixéd. Only
distances up to/5DAt, are treated that way. Beyond this
AT ')-(S distance_ the pqrticles do not feel a n_oticeable influence pf the
=2-4\/ —exg — —— |+ 2AT+%, (2+Xq) wall during a time step. The Efrownlan.dynamms. algorithm
T 4 AT makes use of these interpolation functions and is almost as
o efficient as a conventional bulk Brownian dynamics simula-

~ Xo o tion. It has O(At) global discretization errors instead of
—2(1+Xxp)erf —| —2 exgAt+Xo] O(+/At) errors for a naive treatment of the wall, notwith-
L2 \/E standing the fact that a naive treatment of a sticky wall is
~ ~ quite difficult to establish.
2At+Xg
X erfc 2\/E . IV. AN EXAMPLE

o . As an example we consider a system of particles in a
Its random step to be taken from the distribution of its poSne_dimensional box, of which one wall is sticky while the
sible displacements is_sufficiently well characterized by &yher one is fully reflecting. At the start of the simulation the
mean displacement;;{DAt, plus a random displacement particles are homogeneously distributed over the box and

with a known root-mean-square valufe,/DAt, none of the particles is sticking to the sticky wall. The time
X A « A dependence of the fraction of the particles that sticks to the
_ AN~y t wall is then monitored.
AX=h \/DA'[’Er) DAt+T, ‘/DAt’Qr) VDAU. As mentioned before, in the simulations we UsE=1

(199 andD=1. The only nondetermined dimension left is the

length scale. We fix this length scale by chooskg,;=0,
HereAU is a stochastic increment with mean zero and vari-which givesx.,,~=1 (and becaus® =1 alsot,,=1). Note
anceAt, which is not necessarily Gaussian. For generatinghat the choice,,;;=0 does not mean that the wall is not
the results presented in this paper we used a very simplgticky.” A nonsticky wall corresponds té-,,;=. The sys-
expression forAU; a distribution consisting of two delta tem is know characterized by one free parametewhich is
peaks with equal weights. The functiohsandf, are related the distance between the two walls.
to the moments of the displacement via The evolution of the system proceeds in two steps. First

the region near the wall is depleted. There will be a quasis-

; X At 1 | (xh) tationary equilibrium between the number of particles stick-
1 T L ing to the wall and the concentration fil th I
Sar't Azl /o0 g profile near the wall.
DAt ot DALL(C) This equilibrium will be established in a time proportional to

5 N tenar the “retention time” of the particles near the sticky

f X ﬂ _ 1 ﬂ _ ﬂ (20) wall. Then the bulk concentration profile will slowly adapt to
2 JDAt tehad DAt (X% | (x%) ' the fast dynamic equilibrium near the wall. At a certain dis-

tance from the sticky walla fewxg,,), the density profile of
In these expressions the factdsd) correct for the fact that the bulk will equilibrate toward a uniform distribution. In a
a free particle may stick to the wall, so that its probability box of macroscopic dimensions the characteristic time for
distribution is not normalized, and averages have to be cotthis latter process will be much larger than that for attain-
rected for this effect. Although there are four variables in thement of the dynamic equilibrium near the sticky wall, as it
problem O, F,a, X0, andAt), the scaling shows that any will be related to the size of the box. Clearly, this time scale
situation can be characterized by a proper scalin§,aind  will be of the order ofL?/D, whereL is the size of the box.
f,, which are dimensionless functions of two variables only. The results of this simulation are plotted in Fig. 5. The
For the case of a Brownian particle in free space, the valuebox size is chosen ds=3. The equilibrium fraction of par-
of these functions aré,=0 and f,=2, respectively. In ticles sticking to the wall will then be
Fig. 4 we plotted these functions versus the scaled initial

position, x,/\DAt, for different values ofAt/tg,,. One o OH Fupal 1 (21)
sees that for large values of this ratio the wall appears almost wal ™ exd —Fya] +L 4

fully reflective over the course of the time stgpompare
with Fig. 3 in Ref.[1]]. This is caused by the fact that the This is indeed the limiting value obtained by the simulations.
average residence time near the wall due to its stickiness is The simulations were performed for three different values
much smaller than the chosen total time step. However, foof the time stepAt=10"1, 102, and 10 2 and were taken
very small values of the time step, the wall behaves muclover an ensemble of £Qarticles. It is clear that the time
more like an absorbing wallcompare with Fig. 1 in Ref. discretization error is small, since the curves almost super-
[1]). impose. The second graph in Fig. 5 shows the evolution of
Substitution of the analytic expressions given by 8@  the average value of coordinate of the free particles. This
into Eq. (20) gives rather complicated expressions. In theillustrates the depletion of the region near the wall. Over
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1 1 1
fully absorbing wall At tchar=104
0.8 s 5
- 0.8 F Aty =10" 2 08f Atity,=10° 1
<D
= -
< 06 F wall At/tchm=10'2 < At/tchar=102
< > =
% = 10 2 il
< 06 F Ablt =10 2 06 F Atity,=10" 1
g 04 Fos 51‘ 1 1 0
of ~ 3 Atty =10 Q:E Atty =10
02 é 04 = 04 Adtg=10" ]
2.0 & % 2
2 \ Avt,, =10
0 . . . . < ‘
0 2 4 6 8 10 02 F £ o2}
At i,
FIG. 1. The sticking probabilities for a particle that is initially at 0 0 y y
the wall and for particles that are initially free, at different distances o2 3 4 o b2 3 4
P Yy ' x (DAY xo/ (DAY

from the wall Kq/Xcna=0.5,1.0,1.5,2.0).

FIG. 2. The position dependence of the sticking probability
time the remaining free particles establish a homogeneous . .. At,xo) for several values ofAt, scaled in two ways,
distribution over the box again. Therefore not only at thecorresponding to its shofteft) and long(right) time behavior. The
start, but also in the end the concentration profile of the fre@rder of the curves is the same as the order of the labels next to
particles is uniform, their average position being 1.5. them.

V. DISCUSSION AND CONCLUSIONS remaining characteristic time scale is _thg time needed to dif-
fuse over the next smallest characteristic length scale in the
system. In most cases this allows for using time steps that are

o e o o o S TS o MagniUe e (han those used n st
y y techniques in which the full Newtonian equations are solved,

ggmi&uir;dT%%Si?gkalsfo fzrrto,:[?seaggﬁgzgobp |cas(;r:éjla:r<]) uch as molecular dynamics. The process introduced in this
ques. Y property y P aper therefore constitutes a course graining of the short

steep potential well, adjacen_t tp a reﬂectmg_ bound_ary. . range interactions, by setting the time scales associated with
We have chosen to remain in the Brownian regime. Th'%hese interactions equal to zero

means that the real potential, which we model, varies slowly Note that this way of course graining, which we would

at Fhe scale of the particle’s free path. Therefore the particl?Ike to call *hardening coarse graining,” in a sense is oppo-
trajectory has a fractajrandom wall nature everywhere, site to coarse graining procedures that are commonly used.

and the crossing of the potential barrier will not be of a o :
ballistic nature. We think this is the correct limit for the In many methods, such as the dissipative particle mefhd

treatment of many boundary interactions in liquids and soft
condensed matter. In this limit the scaling of the characteris-
tic time, given by Eq(10), is different from the well-known 0.25
Arrhenius scalingwhich denotes a ballistic crossing of the
boundary when the momentum is large engugh
For the boundary to be “sticky” only when in contact

with the particle, we have studied the appropriate limiting
case, where the width of the potential well approaches zero
and its depth becomes infinite, in such a way that the free
energy associated with this potential is kept constant. This is
a purely mathematical simplification. We stay in the Brown- 0
ian regime even though we approximate the barrier by an
infinitely steep potential. The fact that this limit can be taken
is essential for the coarse graining approach inherent to these
simulations. If the width of the potential would be kept finite,

one would introduce a very small time scale into the systen),qiioneq aw=0 (solid vertical ling, so the values to the left of
(r_'ame'l/, the ‘?"f“,JS'O” time corresponding to that WD(;ithn this point have no real physical meaning. The long time behavior of
simulations this time scale must then be resolved. This woulg yaricle starting at this sticky wall is equivalent to that of a freely
limit the discretization time step to very small values. In our gjtysing particle(no energy barrigr starting from a reflecting wall,
approach this problem is avoided. which is positioned ak= — x,, (dashed vertical line Note that

Indeed, the limiting case of a zero width of the potentialthe original wall now only indicates the origin of the position axis
well is in the spirit of the Brownian dynamics method. In this put has no physical “wall properties” anymore. In this case the
method the correlation time of momentum equilibration of probability density would be a reflected Gaussian with its center at
particles is also taken to be zero. As a result, the smallesi= —x.,,. This curve is given by the dotted lines.

0.3

02 f _ode
0.15

0.1

Kehar Pstick — frac(A £, x)

0.05

FIG. 3. The probability density for a particle that is initially
sticking to the wall is given by the solid lines. The sticky wall is
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1.8

FxphD A2, yhany
FyxghD ApM2, ey

0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
XD A2 XD A2
FIG. 4. The dimensionless mean displacemignand the root-mean-square displacembnfsee Eq.(20)], versus the scaled initial

distance from the sticky wall, for several valuesiif't,, (10 ° to 10%). For time steps much smaller than the characteristic or retention
time the wall behaves as an absorbing wall, whereas for much larger time steps it behaves as a reflecting wall.

one introduces “effective particles,” which consist of a num- very “pure boundary” in the sense that it is characterized by
ber of physical particles and which have a larger size. Th@ne fundamental parameter only, namely, the “wall free en-
interactions between these particles are averaged, softer, thargy,” which is free from “local features” such as the precise
those between the constituent, original particles. This treatshape of the potential. Therefore we expect our approach to
ment is what we would like to call “softening coarse grain- have several attractive applications. The most trivial one is a
ing.” It means that the time scales associated with interacproper description of interactions of Brownian particles with
tions are maddarger in this procedurdinstead of being put a “sticky” wall. After connecting a number of these particles
to zerg. This softening causes all “hardness” to disappearby springs, one can study the interaction of a polymer with a
from the coarse-grained system. For some systems this doésticky” wall. The situation becomes even more interesting
not invoke problems, but for others it means that essentiaf the particles themselves are made sticky. This opens up the
features might be lost in the process. Important examples giossibility to correctly simulate solvent quality in a polymer
the latter case are systems with topological constraints sucbolution, using pure Brownian dynamics simulations and
as glasses and entangled polymer systems. We expect thavery short range interactions. A way to do this is to use
“good” coarse graining treatment of such systems needgarticles with a certain volume and make their surface sticky.
both kinds of coarse graining. Some interactions, the more If different beads are given different sticky properties, one
local ones, can be replaced by interactions with time scalean simulate surfactant systems. Maybe even the main fea-
zero, such as used in this paper, others, longer ranged interres of proteins, containing chemical groups exhibiting all
actions, probably should become softer in the appropriatkinds of mutual(local) interactions, can be modeled in this
coarse graining process. Therefore, in a way, the method prevay. Of course, some issues have to be resolved first. One
sented in this paper can be considered a next step in thissue is the difference between a flat wall and a curved bead.
process of progressive coarse graining operations. Another one is how to properly treat particles that stick to-
The sticky boundary introduced in the current paper is aether in clusters.

0.3 e — 1.66
05 1.64
1.62
02 b 5 s
% 015 g 158
< g
0.1 g 16
1.54
0.05 L5
0 T ST POV SRS 15 T OSSO SSSowr
0 1 2 3 4 5 6 71 8 o 1 2 3 4 5 6 7 8

FIG. 5. The left graph shows the time evolution of the fraction of particles at the sticky wall, in a box @f-si2e having one sticking
wall and one reflecting wall. The simulation was started with a homogeneous distributiof pérti@les, none of them sticking to the wall.
For the parameters we chobg,,,/kT=0 andD=1. The three almost identical curves correspond to different choices for the time step
(At=10"1, 1072, and 10°3). In the right graph the time evolution of the mean position of the particles irbthieis shown. This
demonstrates the initial depletion of the region near the wall, leading to a mean valuexXaoibrelinate of the free particles larger thaf2.
Over time, the remaining free particles establish a homogeneous distribution over the box again.
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Approaching the end of this paper we would like to stressurther on we show that this formal expression appears natu-
again that the method we introduced here fully relies on theally. For our aim of describing the motion of the Brownian
fundamental idea that one can perform accurate Browniaparticle over the period of a time step, E@S5) is very
dynamics simulations if only the zeroth, first, and seconduseful. Since we know the initial positior,, of the particle,
moments of the probability distribution of the particle dis- its probability distribution at=0 is given by a delta func-
placement are sampled correctly. This idea was introduced ition. This means that in the end the formal expression will
Ref.[1]. In any case it is clear that it would have been vir- reduce to the desired form,
tually impossible to obtain the results presented here by only
using a “naive algorithm” to treat the particle behavior near p(x,t)=G(t,X,Xo). (AB)
the “sticky” boundary. This would have meant introducing
the very small time scale discussed above. We return to this point later.

To solve Eq.(A2) we note that it is linear in the probabil-
ACKNOWLEDGMENT ity density p. We can therefore apply the method of separa-

tion of variables. First we assume that the solutiongaan

The research of Dr. Peters has been s_upported by & written as a product of time and position dependent func-
Royal Netherlands Academy of Arts and Sciences. tions, e.g.,p(x,t)=u(t)h(x). We substitute this solution

and then divide both sides of EGA2) by this product. This

APPENDIX A: THE GREEN FUNCTION gives
FOR A SQUARE POTENTIAL WELL NEXT
TO A REFLECTING WALL 19y, 1
. : . e — — =L =—\" (A7)
In this appendix we consider the problem of a diffusing iy It Py
particle in a square potential well adjacent to a wall. Gener-
ally, this problem is described by The right- and left-hand sides each depend on a different,
independent variable. Both terms must therefore be equal to
ap ) some constant. Due to the diffusion process, the probability
o -V (A1) distribution must “spread,” e.g., its time derivative must be

negative. We used this “physical intuition” to introduce the

wherep is the probability distributiorithe “concentration) ~ Sduare and the minus sign. The subschptakes into ac-
of the particle and is its probability flux (the “flow den- count that for every possible value of the separation constant

sity”). In dimensionless, one-dimensional, form we obtain, » We obtain a different, valid solution. For the time depen-
dent factor inp(x,t) we find immediately

J
ST PO =(Lp)(X,1), (A2) Y(t)~exd —N2t]. (A8)

where £ is the operator For the position dependence we must solve the other part of
Eqg. (A7), e.g., construct the eigenfunctions of the operator
9 9 9 L, given by Eq.(A3),
(Lp)(x,t)=— 1 p(x,t) —UX)+ —p(xt) [, (A3)
X X X Ch——\24, | (A9)
where the divergence has become a simple derivative, and . o ]
the (negative of thg flux is given by the two contributions If the operatorZ is self-adjoint, one obtains a complete set of
between the square brackets. The first term stems from tHfthogonal eigenfunctiongs, }. In this case one can use the
force on the particle exerted by the potential field, the secon§eory of self-adjoint operators to form the Green function
gives the(pure diffusion contribution, due to the probability USing the eigenfunctions. For arbitrad(x) the operatorC
(“concentration”) gradient. is not self-adjoint for the ordinary functional inner product.
We now assume that the particle resides on the positive Nevertheless, one can easily find a generalized inner product
axis. Atx=0 we position an impenetrable, reflecting wall. [given by Eq.(A21)], such that the operator is self-adjoint
Further, the dimensionless potentld(x) is taken to be a for this inner product and the theory is applicable. Having

square potential, noted this we can safely proceed.
The potentialU(x) is flat, except for the jump at=bh.
—E for x<b, This means that in both areas separated by this jump this
U(x)z{ (A4) operator reduces to a simple second derivative. The eigen-
0 for x>b. functions of £ are therefore ordinary sines and cosines,

which have to be correctly matched at the jump. For the

interval[O,b] the appropriate solution must be a cosine, be-

cause of the reflecting boundary condition, implying a zero

p(x,t)= wa(t,x,xo)p(xo,O)dxo. (A5) probability flux on the wall. Therefore, we find as a general
0 solution to Eq.(A9),

The formal solution of this problem is given by
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COSAX for x<b, by (X)
A (X)= o (A10)
The appropriate choices fer and 8 are found by consider- =1{ (sir’Ab+cos’\b exq —E])coshx
ing the probability fluxj(x) at the jump of the potential, —sinb cosab(1—exg —E])sinAx  for x>b.
_ d d (A17)
J0==p0)— U= —p(x).  (ALD)

Using straightforward trigonometry rules one can obtain an-
Integrating Eq.(Al) over a very small intervalA,B],  other equivalent expression for the caseb,
around the jump in the potentiaAKb<B), we obtain an
expression for the time derivative of the number of particles

L 1 1
in this interval. b (X)= §+§exp(—E)>cos)\x
afB (x)d fBaj dx=j(A)—j(B) (A12) 1 1
at Ap A X : : —(E—Eexp(—E) cosA(2b—x). (A18)

It is clear that ifB—A—0 (keepingA<b<B), the left-hand

side of this expression must become zero. Otherwise palyow we can write the general solution fpfx,t), as a su-

ti_cles would _suddenly "disappe:_:\r" at the poten_tial jump._The perposition of all solutions for the possiblevalues,
right-hand side then tells us thamust be continuous. As

contains at least oné-function [the derivative of a step
function, cf. Eqs(A4) and(Al11)], the probability densityp
should also contain a step function, to cancel this singularity.
Assuming that the change in the probability density on both
sides of the potential jump will be governed by Boltzmann’s

law, we propose for the probability density a form given by WhereC(\) gives the contribution of every eigenfunction to
the final solution. Its precise form is determined by the initial

p(x)=f(x)exg —U(x)], (A13) condition, as we will see. Settirtg=0 we find

p(x,t)=fowC()\)%(x)exp(—Azt)d)\, (A19)

wheref(x) is a continuous function of. Substitution in Eq. "
(A1l) using Eq.(A4) gives p(x,0)= f C(\) by (X)dN. (A20)
0

j(x)=—fexd —U(X)]JES(x—b)— a—fexp:— U(x)]
IxX The precise form o€ can now be found by taking the proper
of functional inner product involvingp(x,0) and the set of
+fexgd —U(X)]JES(x—b)=——exd —U(x)]. eigenfunctions. One should note that the operdtds not
X self-adjoint for the usual functional inner product, but it is
(A14) easy to show it has this property.{,g) =(f,£qg), for the
generalized inner product with the proper weight function,
Indeed, this removes th& function singularity inj(x), asf defined by(see Ref[3])
is continuous. Furthej,will be continuous irk=b, provided
that .
of of (f,91)=f0 exd U(x)]Jf(x)g(x)dx, (A21)
lim — exdE]=Ilim —. Al5
xTh X F{ ] x|b X ( )
wheref and g obey the same, homogeneous boundary con-
Applying these conditions, for every eigenfunction individu- ditions. The generalized inner product, E#21), of two

ally, one finds that eigenfunctions is then given by
lim exgd —E] ¢, (x)=lim ¢, (x), (Al16)
XTh x|b

aw
(hr Prr)= E(sinz)\b+ex;{—2E]cos’-)\b)5()\—>\’)

li i
im —
x1b oX

J
¢A(X)=Ii$ Zx B AN)S(N—N"). (A22)

After substitution of Eq(A10) and solving the equations for Now we can determin€(\), by taking a functional inner
a and B, one finds product of Eq.(A20) with an eigenfunction,
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f:exp[u(x)]qs)\,(x)p(x,O)dx pfree(t+AtuX):Psticl&At)pstickafree(AtrX)

- © + fo pfree(tvxo)pfree—»free(AtaXvXO)dXO-
= JO C(K)fo dxexg U(x)] ¢, (x) gy (x)dA
o ) ) , When trying to calculatg(t,0) by inserting Eq(B2) into Eq.
= JO C(MAMN)S(N=N")dA=A(N)C(N'). (B1) and using the detailed expressions for the transitional
probabilities, one encounters difficulties. For instance, when
(A23)  using the small time expression Ed.1), one gets a diver-

- . gent resultas 1A/At in the finite difference approximation
Combining Eqs(A19), (A20), and(A23), we can write The reason for this problem is that the initial values of

o Pqic(t) andpsedt,X) cannot be chosen independently. The

J dx'exg U(x") ]\ (x")p(x’,0) divergent result indicates an infinitely fast “equilibration” of

p(x,t)= f” 0 by (X) initial conditions if they do not obey the interdependence.
’ 0 A(N) » The correct boundary condition can be most easily de-

rived using the jump conditions of the square well potential
Eqg. (A16). This condition states that an eigenfunction before
and after the jump always differs a factor gxji]. Since
any solution is a sum of eigenfunctions, this means that this
factor is the same for any function. Furthermore, in the limit

X exp(— N2t)d\, (A24)

which has indeed the form of EGA5), so that we can finally
write the Green function as

2 (o B, (X) by (Xo) of b—0 the well has such a small gap that it is always
G(t,X,Xg) = —f exg U(Xq)]— A 170 internally equilibrated, i.e., the probability density is constant
mJo si’Ab+exd — 2E]cos'\b in the well. By integrating ovek(0<x<b) one then finds
X exp( — A2t)d\. (A25) that
APPENDIX B: THE STICKY BOUNDARY CONDITION Prrec1,0) = exd Fyan] Psiick(t) - (B3)

FOR THE FOKKER-PLANCK EQUATION

Away from the “sticky” wall the Brownian particle dif-
fuses freely. Therefore, everywhere in space the probabilit)é
distribution, psedX,;t), should obey the Fokker-Planck equa-
tion. The wall is macroscopically occupied, with probability
Psic(t). Particles at the wall can become free particles and
vice versa. To get a closed set of equations figg., a 9
boundary condition is needed that takes into account this — Prred 1,0) = —exXd Fyanlj (1,0)=exd Fyanl
wall interaction. The probability flux at the wall must equal at

ombining this expression with EdB1) one obtains the
boundary condition fopsee,

the decrease per unit time of the sticking probability at the J
wall, thus x| ~UPrred 1.0)+ D= Prred 1,0 [, (B4)
_ 9
J(tao):_ﬁpstick(t)- (B1)
During a time step\t the probabilities evolve according wherev is a drift velocity, imposed by additional, determin-
to istic forces, if present. Two extreme cases are the fully ad-
sorbing and the fully reflecting boundary conditions. Fully
Pstic(t+ A1) = Pgiic(t) Pstick stick( At) absorbing means thét,,— — . In this case Eq(B3) gives

that pfed(t,0)=0 [since Pg;q(t) is bounded The fully re-

+J Dired t:X0) Prios sl At,Xo) %, (B2) erctl.ng I|n1|t is obtained forF,,,,— %, here Eq.(B4) gives
0 thatj(t,0)=0.
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